Do Age and Myopia Level influence Short-Term Choroidal Thickening Induced by Contrast and Defocus-Modulating Myopia Control Spectacle Lenses?

Purpose

Short-term changes in subfoveal choroidal thickness (SFCT) may serve as early indicators of myopia control efficacy. SFCT can vary across age and refractive error, and its short-term response to treatment remains under investigation. This study assessed SFCT responses in myopic children after short-term wear of contrast and defocus-modulating myopia control lenses, analysed by age and myopia level.

<u>Methods</u>

In this prospective, randomised, crossover study, SFCT response was defined as the change from baseline after one week of full-time (>12 hrs/day) wear of Diffusion Optics Technology™ (DOT), Defocus Incorporated Multiple Segments (DIMS), and standard single vision (SV) spectacle lenses. Eligible participants [aged 6–12 years; −8.00D to −0.50D spherical equivalent refraction (SER); astigmatism < 2.00DC; anisometropia ≤ 2.00D; best-corrected VA ≤ 0.10 logMAR) underwent Optical Coherence Tomography imaging (SPECTRALIS®; 6 meridians, 30° apart) following a 30-minute distance viewing task for stabilisation. SFCT was determined using a semi-automated segmentation protocol. A repeated-measures general linear model was used to compute estimated marginal means (EMMs), including lens type as a within-subjects factor, and age group and myopia level as between-subjects factors, along with randomisation order and sex. Participants were dichotomised into subgroups based on age (younger: <10 years; older: ≥10 years) and SER (moderate myopia: ≤−2.25D; low myopia: −0.50D to −2.25D), with subgroup thresholds identified to harmonise distributions.

Results

Thirty-eight participants (13 female, mean age 9.7 \pm 1.6 years, mean SER $-2.25 \pm 1.21D$) completed the study. Main effects analysis indicated a significant effect on SFCT for lens type (p < 0.05), but not for age group or myopia level - when analysed as independent between-subjects factors. Choroidal thickening was observed for both myopia control lenses (EMM \pm SE: 13.18 \pm 2.82 μ m for DOT; 8.72 \pm 2.74 μ m for DIMS), while SV produced a negligible thinning ($-1.21 \pm 1.78 \mu$ m). The 2-way interaction between age and myopia level was not significant (p = 0.195); however, post-hoc comparisons from the 3-way interaction (with lens type) showed significant (DOT vs SV, p = 0.029) and borderline (DIMS vs SV, p = 0.105) differences in younger moderate myopes, suggesting a prompt response in this subgroup. Additionally, SFCT responses for each lens were otherwise consistent across age and myopia groups.

Conclusions

Both contrast and defocus-modulating myopia control lenses induced subfoveal choroidal thickening after short-term wear, whereas SV did notLens design was the primary determinant, with no significant influence from age or myopia level. Nonetheless, the variability in timing and extent of thickening - particularly among younger, moderate myopes - requires further investigation.